欧拉公式eiθ=cosθ+isinθ(e为自然对数的底数,i为虚数单位)由瑞士数学家Euler(欧拉)首先发现.它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,被称为“数学中的天桥”,则eiπ=( )
【考点】复数的指数形式.
【答案】A
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 14:0:0组卷:48引用:5难度:0.7
相似题
-
1.欧拉公式 eiθ=cosθ+isinθ(其中e=2.718…,i为虚数单位)是由瑞士著名数学家欧拉创立的,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,下列结论中正确的是( )
发布:2024/9/18 10:0:8组卷:13引用:3难度:0.8 -
2.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知eai为纯虚数,则复数
在复平面内对应的点位于( )sin2a+11+i发布:2024/9/5 0:0:8组卷:14引用:2难度:0.7 -
3.欧拉公式exi=cosx+isinx(其中i为虚数单位,x∈R),是由瑞士著名数学家欧拉创立的,公式将指数函数的定义域扩大到复数,建立了三角函数与指数的数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥.依据欧拉公式,
的共轭复数为( )e-πi3发布:2024/10/8 7:0:2组卷:43引用:4难度:0.5