为了求一个棱长为2的正四面体体积,小明同学设计如下解法:构造一个棱长为1的正方体,如图1:则四面体ACB1D1为棱长是2的正四面体,且有V四面体ACB1D1=V正方体-VB-ACB1-VA1-AB1D1-VC1-B1CD1-VD-ACD1=13V正方体=13.
学以致用:
(1)如图2,一个四面体三组对棱长分别为3,2,5,求此四面体外接球表面积;
(2)若四面体ABCD每组对棱长分别相等,求证:该四面体的四个面都是锐角三角形.
2
2
V
四面体
AC
B
1
D
1
=
V
正方体
-
V
B
-
AC
B
1
-
V
A
1
-
A
B
1
D
1
-
V
C
1
-
B
1
C
D
1
-
V
D
-
AC
D
1
1
3
V
正方体
=
1
3
3
5
【考点】棱柱、棱锥、棱台的体积;球的体积和表面积.
【答案】(1)6π;
(2)证明见解析.
(2)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/22 8:0:8组卷:10引用:2难度:0.5
相似题
-
1.如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
,四边形DCBE为平行四边形,DC⊥平面ABC.32
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.发布:2025/1/20 8:0:1组卷:95引用:3难度:0.1 -
2.如图所示,AB为圆O的直径,PC⊥平面ABC,Q在线段PA上.
(1)求证:平面BCQ⊥平面ACQ;
(2)若Q为靠近P的一个三等分点,PC=BC=1,,求VP-BCQ的值.AC=22发布:2025/1/20 8:0:1组卷:37引用:3难度:0.6 -
3.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)设CD的中点为M,求证:EM∥平面DAF;
(Ⅱ)求三棱锥B-CME的体积.发布:2025/1/20 8:0:1组卷:16引用:1难度:0.5