已知F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,点F1,F2在直线l:y=kx+m的同侧,且点F1,F2到直线l的距离分别为d1,d2.
(1)若椭圆C的方程为x212+y23=1,直线l的方程为y=x-15,求d1•d2的值,并判断直线l与椭圆C的公共点的个数;
(2)若直线l与椭圆C有两个公共点,试求d1•d2所需要满足的条件;
(3)结合(1)和(2),试写出一个能判断直线l与椭圆C有公共点的充要条件(不需要证明).
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
x
2
12
+
y
2
3
=
1
y
=
x
-
15
【考点】直线与圆锥曲线的综合;椭圆的几何特征.
【答案】(1)d1•d2=3;1个公共点;
(2);
(3),证明见解析.
(2)
d
1
•
d
2
<
b
2
(3)
d
1
•
d
2
≤
b
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:88引用:3难度:0.3
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:104引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7