如图,在四棱锥P-ABCD中,PA⊥平面ABCD,正方形ABCD的边长为2,E是PA的中点.
(1)求证:PC∥平面BDE;
(2)若PD=4,线段PC上是否存在一点F,使AF⊥平面BDE?若存在,求出PF的长度;若不存在,请说明理由.(用坐标法解答不给分)
【答案】(1)证明过程见解答;(2)存在点F,使得AF⊥平面BDE,PF=.
6
5
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/29 8:0:10组卷:259引用:4难度:0.5
相似题
-
1.如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.
(1)证明:O1A∥平面B1OC;
(2)证明:平面A1ACC1⊥平面B1BCC1;
(3)设AB=AA1=2,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P,当点C在圆周上运动时,求P的最大值.发布:2025/1/20 8:0:1组卷:25引用:1难度:0.3 -
2.如图,AB是圆O的直径,点C是弧AB的中点,D、E、F分别是VB,VC,AC的中点,VA⊥平面ABC.
(Ⅰ)求证:DE∥平面VOF;
(Ⅱ)求证:DE⊥平面VAC.发布:2025/1/20 8:0:1组卷:27引用:1难度:0.5 -
3.如图,AB是圆O的直径,C是圆O上的点.P是圆所在的面外一点.设Q为PA的中点,G为AOC的重心.求证:QG∥平面PBC.
发布:2025/1/20 8:0:1组卷:81引用:0难度:0.7