胡夫金字塔的形状为四棱锥,1859年,英国作家约翰•泰勒(JohnTaylor,178-1846)在其《大金字塔》一书中提出:古埃及人在建造胡夫金字塔时利用黄金比例(1+52≈1.618),泰勒还引用了古希腊历史学家希罗多德的记载:胡夫金字塔的每一个侧面的面积都等于金字塔高的平方如,如图,若h2=as,则由勾股定理,as=s2-a2,即(sa)2-sa-1=0,因此可求得sa为黄金数,已知四棱锥底面是边长约为856英尺的正方形(2a=856),顶点P的投影在底面中心O,H为BC中点,根据以上信息,PH的长度(单位:英尺)约为( )
1
+
5
2
s
a
s
a
s
a
【考点】类比推理.
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/23 8:0:8组卷:75引用:3难度:0.8
相似题
-
1.阅读下表后,请应用类比的思想,得出椭圆中的结论:
圆 椭圆 定
义平面上到动点P到定点O的距离等于定长的点的轨迹 平面上的动点P到两定点F1,F2的距离之和等于定值2a的点的轨迹(2a>|F1F2|) 结
论如图,AB是圆O的直径,直线AC,BD是圆O过A,B的切线,P是圆O上任意一点,
CD是过P的切线,则有“PO2=PC•PD”椭圆的长轴为AB,O是椭圆的中心,F1,F2是椭圆的焦点,直线AC,BD是椭圆过A,B的切线,P是椭圆上任意一点,CD是过P的切线,则有 发布:2025/1/28 8:0:2组卷:32引用:2难度:0.5 -
2.已知
tan(x+π4)=1+tanx1-tanx,那么函数y=tanx的周期为π.类比可推出:已知x∈R且(x≠kπ+π4),那么函数y=f(x)的周期是( )f(x+π)=1+f(x)1-f(x)发布:2025/1/6 8:0:1组卷:11引用:1难度:0.7 -
3.若
,x≠kπ+π4,则y=tanx的周期为π.类比可推出:设x∈R且tan(x+π4)=1+tanx1-tanx,则y=f(x)的周期是( )f(x+π)=1+f(x)1-f(x)发布:2025/1/6 8:0:1组卷:36引用:1难度:0.5