各项均为正数的数列{an}的前n项和记为Sn,已知a1=1,且(Sn+1+1)an=(Sn+1)an+1对一切n∈N*都成立.
(1)求数列{an}的通项公式;
(2)在ak和ak+1之间插入k个数,使这k+2个数组成等差数列,将插入的k个数之和记为ck,其中k=1,2,…,n.求数列{cn}的前n项和.
【考点】错位相减法.
【答案】(1)an=2n-1;(2)[1+(n-1)•2n].
3
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/5 4:0:2组卷:154引用:3难度:0.5
相似题
-
1.已知数列{an}是公差不为0的等差数列,前n项和为Sn,S9=144,a3是a1与a8的等比中项.
(1)求数列{an}的通项公式;
(2)数列{bn}满足+log2bn=0,若cn=anbn,求数列{cn}前n项和为Tn.an-13发布:2024/12/29 12:0:2组卷:130引用:2难度:0.5 -
2.已知等差数列{an}的前n项和为Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求数列{an}的通项公式;
(2)若bn=2n-1+1,令cn=an•bn,求数列{cn}的前n项和Tn.发布:2024/12/29 6:0:1组卷:218引用:4难度:0.4 -
3.已知等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)若,令cn=anbn,求数列{cn}的前n项和Tn.bn=3n-1发布:2024/12/29 5:30:3组卷:513引用:31难度:0.6