如图,三棱锥P-ABC的底面为等腰直角三角形,∠ABC=90°,AB=2.D,E分别为AC,BC的中点,PD⊥平面ABC,点M在线段PE上.
(1)从下面的①、②、③、④四个条件中选择两个作为已知,使得平面MBD⊥平面PBC,并给予证明;
条件①:PD=2;条件②:PD=3;条件③:PM=3ME;条件④:PE=3ME.
(2)在(1)的条件下,求直线BP与平面MBD所成的角的正弦值.
2
3
【答案】(一)当选择①④时:
(1)证明过程见解答.
(2).
(二)当选择②③时:
(1)证明过程见解答;
(2).
(1)证明过程见解答.
(2)
1
2
(二)当选择②③时:
(1)证明过程见解答;
(2)
3
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/3 11:0:1组卷:37引用:1难度:0.4
相似题
-
1.AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所
在平面与圆O所在平面互相垂直,
已知AB=2,EF=1.
(1)求证:BF⊥平面DAF;
(2)求BF与平面ABCD所成的角;
(3)若AC与BD相交于点M,
求证:ME∥平面DAF.发布:2025/1/20 8:0:1组卷:29引用:3难度:0.1 -
2.如图,AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,EF=1.
(Ⅰ)求证:BF⊥平面ADF;
(Ⅱ)求BF与平面ABCD所成的角;
(Ⅲ)在DB上是否存在一点M,使ME∥平面ADF?若不存在,请说明理由;若存在,请找出这一点,并证明之.发布:2025/1/20 8:0:1组卷:23引用:3难度:0.3 -
3.如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)设Q为PA的中点,G△AOC的重心,求证:QG∥平面PBC.
(3)若AC=BC=,PC与平面ACB所成的角为3,求三棱锥P-ACB的π3
体积.发布:2025/1/20 8:0:1组卷:74引用:1难度:0.7