已知椭圆x24+y23=1,该椭圆与x轴的交点分别是A和B(A在B的左侧),该椭圆的两个焦点分别是F1和F2(F1在F2的左侧),椭圆与y轴的一个交点是P.
(1)若P为椭圆的上顶点,求经过点F1,F2,P三点的圆的方程;
(2)已知点P到过点F2的直线l的距离是1,求直线l的方程;
(3)已知椭圆上有不同的两点M、N,且直线MN不与坐标轴垂直,设直线MA、NB的斜率分别为k1、k2,求证:“k2k1=3”是“直线MN经过定点(1,0)”的充要条件.
x
2
4
+
y
2
3
k
2
k
1
【考点】直线与圆锥曲线的综合;椭圆的几何特征.
【答案】(1)所求圆的方程为.
(2)当P为上顶点时,直线l的方程为x=1或x+y-1=0.
当P为下顶点时,直线l的方程为x=1或x-y-1=0.
(3)证明过程见解答.
x
2
+
y
2
-
2
3
3
y
-
1
=
0
(2)当P为上顶点时,直线l的方程为x=1或x+
3
当P为下顶点时,直线l的方程为x=1或x-
3
(3)证明过程见解答.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/31 8:0:9组卷:82引用:1难度:0.4
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:97引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7