综合与实践
【操作发现】
甲、乙两位同学对“三角形中的中点问题”进行了讨论,过程如下:
如图1,在△ABC中,点D是BC的中点,点E是边AB上一点,连接ED. 甲同学:延长ED至点F,使DF=DE,连接CF,如图2所示. ∵D是BC的中点,∴BD=CD. 又∵DE=DF,∠BDE=∠CDF,∴△BDE≌△CDF.(依据1: SAS SAS )乙同学:过点C作AB的平行线交ED的延长线于点F,如图3所示. ∵CF∥AB,∴∠B=∠DCF. 又∵BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF.(依据2: ASA ASA )![]() |
SAS
SAS
,依据2是 ASA
ASA
.(填“SAS”“ASA”或“AAS”)【类比迁移】
(2)如图4,在四边形ABCD中,AD∥BC,E是DC的中点,连接AE,BE,AE平分∠BAD,请根据(1)中的方法,判断线段AD,AB,BC之间的数量关系,并说明理由.
【拓展应用】
(3)如图5,在Rt△ACB中,∠ACB=90°,AB=5,BC=3,以A为顶点作Rt△ADE,使∠ADE=90°,∠EAD=∠CAB,AD=2,连接BE,F为线段BE的中点.将△ADE绕点A在平面内旋转,当DE∥BC时,请直接写出线段CF的长.

【考点】几何变换综合题.
【答案】SAS;ASA;SAS;ASA
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/1 8:0:9组卷:345引用:1难度:0.5
相似题
-
1.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.
(1)连接BD,
①如图1,若α=80°,则∠BDC的度数为 ;
②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.
(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.发布:2025/6/23 16:0:1组卷:633引用:8难度:0.1 -
2.如图,△ABC为边长是4
的等边三角形,四边形DEFG是边长是6的正方形.现将等边△ABC和正方形DEFG按如图①的方式摆放,使点C与点E重合,点B、C、E、F在同一条直线上,△ABC从图①的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点B与点E重合时停止运动,设△ABC的运动时间为t秒.3
(1)当点A与点D重合时,求此时t的值;
(2)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,求S与t之间的函数关系式;
(3)如图②,当点A与点D重合时,作∠ABE的角平分线BM交AE于点M,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形?若存在,求线段AH的长度;若不存在,请说明理由.发布:2025/6/24 11:30:1组卷:111引用:1难度:0.3 -
3.如图,在△ABC中,∠ABC=90°,AB=4,BC=3,点P从点A出发,沿折线AB-BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动,当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ,设点P的运动时间为t秒.
(1)当点D与点E重合时,求t的值.
(2)用含t的代数式表示线段CE的长.
(3)当△PDQ为直角三角形时,求△PDQ与△ABC重叠部分的面积.发布:2025/6/25 5:0:1组卷:45引用:1难度:0.1