如图1,在△ABC中,BC=4,AB=13,cosB=1313,E,D分别为BC,AC的中点,以DE为折痕,将△DCE折起,使点C到C1的位置,且BC1=2,如图2.
(1)设平面C1AD∩平面BEC1=1,证明:l⊥平面ABC1;
(2)P是棱C1D上一点(不含端点)过P、B、E三点作该四棱锥的截面,要求保留画痕,并说明过程;
(3)若(2)中的截面与面BEC1所成的二面角的正切值为32,求该截面将四棱锥分成上下两部分的体积之比.
AB
=
13
cos
B
=
13
13
3
2
【答案】(1)证明见解答过程;(2)答案见解答;(3).
4
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/8 8:0:9组卷:46引用:4难度:0.4
相似题
-
1.如图所示,AB为圆O的直径,PC⊥平面ABC,Q在线段PA上.
(1)求证:平面BCQ⊥平面ACQ;
(2)若Q为靠近P的一个三等分点,PC=BC=1,,求VP-BCQ的值.AC=22发布:2025/1/20 8:0:1组卷:38引用:3难度:0.6 -
2.如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
,四边形DCBE为平行四边形,DC⊥平面ABC.32
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.发布:2025/1/20 8:0:1组卷:95引用:3难度:0.1 -
3.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)设CD的中点为M,求证:EM∥平面DAF;
(Ⅱ)求三棱锥B-CME的体积.发布:2025/1/20 8:0:1组卷:16引用:1难度:0.5