如图1,抛物线y=ax2+2ax+c与x轴交于A、B两点且AB=4,与y轴交于点C(0,-3).
(1)求抛物线的对称轴和解析式;
(2)抛物线的对称轴上有一点M,连接CM,以M为旋转中心顺时针旋转90°后,点C的对应点C′恰好落在抛物线上,求点M坐标;
(3)如图2,点D是抛物线顶点,点P是抛物线上一点,连接AD,CP交于H,当∠CHD=45°时,求点P的坐标.

【考点】二次函数综合题.
【答案】(1)抛物线对称轴为直线x=-1,解析式为y=x2+2x-3;
(2)M(-1,-2)或(-1,-3);
(3)P的坐标为(-,-).
(2)M(-1,-2)或(-1,-3);
(3)P的坐标为(-
7
3
20
9
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/27 7:0:1组卷:478引用:2难度:0.1
相似题
-
1.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(-2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.
(1)求二次函数的解析式.
(2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.
(3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.发布:2025/5/23 23:30:1组卷:634引用:3难度:0.3 -
2.如图,抛物线y=ax2+bx+c与x轴交于A(
,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=3OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.3
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当FH=HP时,求m的值;
(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求12AQ+EQ的最小值.14发布:2025/5/24 0:0:1组卷:3204引用:2难度:0.3 -
3.如图,是某水上乐园为亲子游乐区新设滑梯的示意图,其中线段PA是竖直高度为6米的平台,PO垂直于水平面,滑道分为两部分,其中AB段是双曲线y=
的一部分,BCD段是抛物线的一部分,两滑道的连接点B为抛物线的顶点,且B点的竖直高度为2米,滑道与水平面的交点D距PO的水平距离为7米,以点O为坐标原点建立平面直角坐标系,滑道上点的竖直高度为y,距直线PO的水平距离为x.10x
(1)请求出滑道BCD段y与x之间的函数关系式;
(2)当滑行者滑到C点时,距地面的距离为1米,求滑行者此时距滑道起点A的水平距离;
(3)在建模实验中发现,为保证滑行者的安全,滑道BCD落地点D与最高点B连线与水平面夹角应不大于45°,且由于实际场地限制,≥OPOD,求OD长度的取值范围.12发布:2025/5/23 23:0:1组卷:271引用:2难度:0.2