已知b>0,曲线C1:x2=4y,过点M(0,b)的曲线C1的所有弦中,最小弦长为8.
(1)求b的值;
(2)过点M的直线与曲线C1交于 A、B两点,曲线C1在A、B两点处的两条切线交于点P,求点P的轨迹C2;
(3)在(2)的条件下,N是平面内的动点,动点Q是C2上与N距离最近的点,满足|NQ|=|NM|的动点N的轨迹为C3;并判断是否存在过M的直线l,使得l与C1、l与C3的四个交点的横坐标成等差数列,说明理由.
【考点】直线与圆锥曲线的综合.
【答案】(1)b=4;
(2)y=-4;
(3)不存在,理由见解析.
(2)y=-4;
(3)不存在,理由见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/25 8:0:9组卷:44引用:1难度:0.2
相似题
-
1.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:97引用:1难度:0.9 -
2.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7