已知函数f(x)=(12)x2-mx,g(x)=x2-2ax,x∈R.
(1)若f(x)在[1,2]上单调递增,求m的取值范围;
(2)若u=2,对任意的x1∈R,总存在x2∈[1,2],使得f(x1)≤g(x2)成立,求a的取值范围.
(
1
2
)
x
2
-
mx
【考点】函数恒成立问题.
【答案】(1)[4,+∞).
(2)(-∞,].
(2)(-∞,
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/28 6:0:4组卷:64引用:1难度:0.6
相似题
-
1.对于任意x1,x2∈(2,+∞),当x1<x2时,恒有
成立,则实数a的取值范围是alnx2x1-2(x2-x1)<0发布:2024/12/29 7:30:2组卷:64引用:3难度:0.6 -
2.把符号
称为二阶行列式,规定它的运算法则为aamp;bcamp;d.已知函数aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函数,若对∀x∈[-1,1],∀θ∈R,都有g(x)-1≥f(θ)恒成立,求实数λ的取值范围.g(x)=x2amp;-11amp;1x2+1发布:2024/12/29 10:30:1组卷:14引用:6难度:0.5 -
3.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是.
发布:2024/12/29 5:0:1组卷:547引用:37难度:0.5