实践探究:
如图,把一个长方形的纸片对折两次,然后剪下一个角,若得到一个正方形,剪口与折痕应成 4545度的角.
知识应用:
(1)小明按照以上方法剪出两个边长为1的全等正方形,如图②所示摆放,则四边形OEBF的面积为 1414.
(2)小明发现,正方形A1B1C1O在绕点O转动的过程中,两个正方形重叠部分的面积与正方形ABCD面积之间存在一定的数量关系,如图③写出该数量关系,并予以证明.
拓展延伸:
小明剪了两个大小不同的等腰直角三角形ABC和等腰直角三角形DEF,且∠BAC=∠EDF=90°,如图④放置,其中点D是BC的中点,点F在BA的延长线上,BE∥AC,当点M是DE的中点,EF=10时,请直接写出两个等腰直角三角形重叠部分的面积.
1
4
1
4
10
【考点】四边形综合题.
【答案】45;
1
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/6 8:0:9组卷:234引用:4难度:0.3
相似题
-
1.如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.
(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;
(2)当AE=3时,求CF的长;2
(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.发布:2025/6/10 11:30:1组卷:3953引用:8难度:0.1 -
2.阅读下面材料.
小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)写出小炎的推理过程;
(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于 关系时,仍有EF=BE+DF;
(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.发布:2025/6/10 11:30:1组卷:291引用:2难度:0.2 -
3.如图1,点O为长方形ABCD的中心,x轴∥BC,y轴∥AB,AB=6,BC=12.
(1)直接写出A、B的坐标;
(2)如图2,若点P从C点出发以每秒2个单位长度向CB方向匀速移动(不超过点B),点Q从B点出发以每秒1个单位长度向BA方向匀速移动(不超过点A),连接DP、DQ,在点P、Q移动过程中,四边形PBQD的面积是否发生变化?若不变,求其值;若变化,求其变化范围.
(3)如图3,若矩形MNRS中,MN=4,NR=2,M(-8,0),MS在x轴上,矩形MNRS以每秒1个单位长度向右平移t(t>0)秒得到矩形M'N'R'S',点M'、N'、R'、S'分别为M、N、R、S的对应点,与此同时,点G从点O出发,沿矩形OEDF的边以每秒2个单位长度的速度顺时针方向运动,当点G第二次运动到点E时,点G和矩形MNRS都停止运动.连接GM'、GN',当△GM'N'的面积为12时,请直接写出t的值.发布:2025/6/10 11:0:1组卷:118引用:2难度:0.1