已知椭圆C:x24+y2b2=1(0<b<2),设过点A(1,0)的直线l交椭圆C于M,N两点,交直线x=4于点P,点E为直线x=1上不同于点A的任意一点.
(1)若|AM|≥1,求b的取值范围;
(2)若b=1,记直线EM,EN,EP的斜率分别为k1,k2,k3,问是否存在k1,k2,k3的某种排列ki1,ki2,ki3(其中{i1,i2,i3}={1,2,3},使得ki1,ki2,ki3成等差数列或等比数列?若存在,写出结论,并加以证明;若不存在,说明理由.
x
2
4
+
y
2
b
2
=
1
(
0
<
b
<
2
)
【考点】直线与圆锥曲线的综合;椭圆的几何特征.
【答案】(1);
(2)k1,k3,k2或k2,k3,k1成等差数列,证明见解析.
[
2
,
2
)
(2)k1,k3,k2或k2,k3,k1成等差数列,证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:198引用:4难度:0.3
相似题
-
1.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:104引用:1难度:0.9 -
2.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7