读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为100∑n=1n,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为50∑n=1(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为10∑n=1n3.通过对以上材料的阅读,请解答下列问题.
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为 50∑n=12n50∑n=12n,它的计算结果是 25502550;
(2)计算5∑n=1(n3-1)= 220220;(填写最后的计算结果)
(3)计算k∑n=11n(n+1)= kk+1kk+1.(用含字母k的式子表示结果)
100
∑
n
=
1
n
∑
50
∑
n
=
1
(
2
n
-
1
)
10
∑
n
=
1
n
3
50
∑
n
=
1
2
n
50
∑
n
=
1
2
n
5
∑
n
=
1
(
n
3
-
1
)
=
k
∑
n
=
1
1
n
(
n
+
1
)
=
k
k
+
1
k
k
+
1
【答案】;2550;220;
50
∑
n
=
1
2
n
k
k
+
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/28 11:0:2组卷:333引用:3难度:0.5
相似题
-
1.小明在做题的时候发现,两个连续正整数的积的倒数可以写成两个式子差的形式.
观察下面式子,完成以下问题:,11×2=1-12,12×3=12-13,…13×4=13-14
(1)请写出第15个式子:;
(2)请用含n的式子表示第n个式子:;
(3)计算:;11×2+12×3+13×4+⋯+12021×2022
(4)思考:如果不是两个连续正整数的积的倒数又如何去解决呢,请类比上题的方法计算:.11×3+13×5+15×7+⋯+12021×2023发布:2025/6/8 13:30:1组卷:162引用:2难度:0.6 -
2.观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m,用含m的代数式表示这组数的和是 .
发布:2025/6/8 14:0:2组卷:1442引用:13难度:0.6 -
3.观察下面的三行数.
-3,9,-27,81,-243,…;①
-5,7,-29,79,-245,…;②
-1,11,-25,83,-241,…;③
(1)第①行第n个数是 ,第②行第n个数是 ,第③行第n个数是 .
(2)是否存在某一列的三个数的和为2187,若存在,请求出这三个数;若不存在,请说明理由.发布:2025/6/8 12:30:1组卷:219引用:1难度:0.3