若函数f(x)=-|x+1|+1,x≤0 sin(π-πx),0<x<1 3x-3,x≥1
,满足f(a)=f(b)=f(c)=f(d)=f(e)且a,b,c,d,e互不相等,则a+b+c+d+e的取值范围是( )
- | x + 1 | + 1 , x ≤ 0 |
sin ( π - πx ) , 0 < x < 1 |
3 x - 3 , x ≥ 1 |
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 14:0:0组卷:109引用:3难度:0.5
相似题
-
1.对于函数y=f(x),若存在x0,使f(x0)=-f(-x0),则点(x0,f(x0))与点(-x0,-f(x0))均称为函数f(x)的“积分点”.已知函数f(x)=
,若点(2,f(2))为函数y=f(x)一个“积分点”则a=;若函数f(x)存在5个“积分点”,则实数a的取值范围为.16-ax,x>06x-x3,x≤0发布:2024/12/29 10:0:1组卷:67引用:5难度:0.5 -
2.已知函数
.f(x)=|x|,x≤22x-2,x>2
(1)在平面直角坐标系中,画出函数f(x)的简图,并写出f(x)的单调区间和值域;
(2)若f(t)≤6,求实数t的取值范围.发布:2024/12/29 7:30:2组卷:39引用:2难度:0.7 -
3.已知函数f(x)=
,若f(x1)=f(x2),且x1≠x2,则|x1-x2|的最大值为.-x-1,x≤0-x2+2x,x>0发布:2024/12/29 3:0:1组卷:122引用:4难度:0.4