某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,14a)的距离MF,始终等于它到定直线l:y=-14a上的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=-14a叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF=12a,例如,抛物线y=12x2,其焦点坐标为F(0,12),准线方程为l:y=-12.其中MF=MN,FH=2OH=1.

(1)【基础训练】请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程;
(2)【技能训练】如图2所示,已知抛物线y=18x2上一点P到准线l的距离为6,求点P的坐标;
(3)【能力提升】如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;
(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段AB分为两段AC和CB,使得其中较长一段AC是全线段AB与另一段CB的比例中项,即满足:ACAB=BCAC=5-12.后人把5-12这个数称为“黄金分割”把点C称为线段AB的黄金分割点.
如图4所示,抛物线y=14x2的焦点F(0,1),准线l与y轴交于点H(0,-1),E为线段HF的黄金分割点,点M为y轴左侧的抛物线上一点.当MHMF=2时,求出△HME的面积值.
1
4
a
1
4
a
1
4
a
1
2
a
1
2
1
2
1
2
1
8
AC
AB
BC
AC
5
-
1
2
5
-
1
2
1
4
MH
MF
2
【考点】直线与圆锥曲线的综合;抛物线的焦点与准线.
【答案】(1)(0,),;
(2)(,4)或(,4 );
(3);
(4)或.
1
8
y
=
-
1
8
(2)(
4
2
-
4
2
(3)
a
=
1
4
(4)
5
-
1
3
-
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/8 8:0:9组卷:38引用:1难度:0.5
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:104引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7