已知圆F1:x2+y2+2x-15=0和定点F2(1,0),其中点F1是该圆的圆心,P是圆F1上任意一点,线段PF2的垂直平分线交PF1于点E,设动点E的轨迹为C.
(1)求动点E的轨迹方程C;
(2)设曲线C与x轴交于A,B两点,点M是曲线C上异于A,B的任意一点,记直线MA,MB的斜率分别为kMA,kMB.证明:kMA•kMB是定值;
(3)设点N是曲线C上另一个异于M,A,B的点,且直线NB与MA的斜率满足kNB=43kMA,试探究:直线MN是否经过定点?如果是,求出该定点,如果不是,请说明理由.
F
1
:
x
2
+
y
2
+
2
x
-
15
=
0
k
NB
=
4
3
k
MA
【考点】椭圆相关动点轨迹.
【答案】(1)椭圆C的方程为.
(2)证明见解答.
(3)直线MN恒过定点.
x
2
4
+
y
2
3
=
1
(2)证明见解答.
(3)直线MN恒过定点
(
2
7
,
0
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:141引用:2难度:0.3
相似题
-
1.已知椭圆
的两焦点为F1,F2,x轴上方两点A,B在椭圆上,AF1与BF2平行,AF2交BF1于P.过P且倾斜角为α(α≠0)的直线从上到下依次交椭圆于S,T.若|PS|=β|PT|,则“α为定值”是“β为定值”的( )x2a2+y2b2=1(a>b>0)发布:2024/8/3 8:0:9组卷:54引用:1难度:0.4 -
2.已知P是椭圆
+x236=1上的动点,过点P作PD⊥x轴,D为垂足,点M满足y29=MD,求点M的轨迹方程.13PD发布:2024/8/2 8:0:9组卷:11引用:0难度:0.6 -
3.已知F是椭圆
的左焦点,O为坐标原点,M为椭圆上任意一点,椭圆的离心率为C:x2a2+y2b2=1(a>b>0),△MOF的面积的最大值为32.32
(1)求椭圆C的方程;
(2)A,B为椭圆的左,右顶点,点P(1,0),当M不与A,B重合时,射线MP交椭圆C于点N,直线AM,BN交于点T,求∠ATB的最大值.发布:2024/8/4 8:0:9组卷:151引用:5难度:0.5