如图,在平行四边形ABCD中,AB=1,AD=2,∠BAD=60°,BD,AC相交于点O,M为BO中点.设向量AB=a,AD=b.
(1)用a,b表示AM;
(2)建立适当的坐标系,使得点C的坐标为C(52,32),求点M的坐标.
AB
=
a
AD
=
b
a
b
AM
C
(
5
2
,
3
2
)
【考点】用平面向量的基底表示平面向量.
【答案】(1);
(2).
AM
=
3
4
a
+
1
4
b
(2)
M
(
7
8
,
3
3
8
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/6 8:0:9组卷:48引用:3难度:0.7
相似题
-
1.如图,在△OAB中,G为中线OM上一点,且
,过点G的直线与边OA,OB分别交于点P,Q.OG=2GM
(Ⅰ)用向量,OA表示OB;OG
(Ⅱ)设向量,OA=43OP,求n的值.OB=nOQ发布:2024/12/29 8:30:1组卷:684引用:7难度:0.7 -
2.如图,在△ABC中,点D是边BC的中点,
,则用向量AG=2GD表示AB,AC为( )BG发布:2024/12/29 8:30:1组卷:739引用:14难度:0.8 -
3.如图矩形ABCD,
,DE=2EC,AC与EF交于点N.BF=2FC
(1)若,求λ+μ的值;CN=λAB+μAD
(2)设,AE=a,试用AF=b,a表示b.AC发布:2024/12/29 4:30:2组卷:22引用:2难度:0.6