【探索发现】(1)如图1,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等,我们知道,无论正方形A1B1C1O绕点O怎么转动,总有△AEO≌△BFO,连接EF,求证:AE2+CF2=EF2;
【类比迁移】(2)如图2,矩形ABCD的中心O是矩形A1B1C1O的一个顶点,A1O与边AB相交于点E,C1O与边CB相交于点F,连接EF,矩形A1B1C1O可绕着点O旋转,判断(1)中的结论是否成立,若成立,请证明,若不成立,请说明理由;
【迁移拓展】(3)如图3,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,直角∠EDF的顶点D在边AB的中点处,它的两条边DE和DF分别与直线AC,BC相交于点E,F,∠EDF可绕着点D旋转,当BF=1cm时,直接写出线段EF的长度.

【考点】四边形综合题.
【答案】(1)见解答,
(2)见解答.
(3)EF=或(cm),
(2)见解答.
(3)EF=
5
13
6
5
5
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/24 8:0:9组卷:484引用:2难度:0.5
相似题
-
1.如图,△AMN是边长为2的等边三角形,以AN,AM所在直线为边的平行四边形ABCD交MN于点E、F,且∠EAF=30°.
(1)当F、M重合时,求AD的长;
(2)当NE、FM满足什么条件时,能使;32(NE+FM)=EF
(3)在(2)的条件下,求证:四边形ABCD是菱形.发布:2025/5/26 2:30:2组卷:150引用:2难度:0.1 -
2.【探究发现】(1)如图1,在四边形ABCD中,对角线AC⊥BD,垂足是O,求证:AB2+CD2=AD2+BC2.
【拓展迁移】(2)如图2,以三角形ABC的边AB、AC为边向外作正方形ABDE和正方形ACFG,求证:CE⊥BG.
(3)如图3,在(2)小题条件不变的情况下,连接GE,若∠EGA=90°,GE=6,AG=8,求BC的长.发布:2025/5/26 2:30:2组卷:957引用:6难度:0.3 -
3.问题情境:
在数学课上,老师给出了这样一道题:如图1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的长.
探究发现:
(1)如图2,勤奋小组经过思考后发现:把△ABC绕点A顺时针旋转90°得到△ADE,连接BD,BE,利用直角三角形的性质可求BC的长,其解法如下:
过点B作BH⊥DE交DE的延长线于点H,则BC=DE=DH-HE.
△ABC绕点A顺时针旋转90°得到△ADE,AB=AC=6,∠BAC=30°∴……
请你根据勤奋小组的思路,完成求解过程.
拓展延伸:
(2)如图3,缜密小组的同学在勤奋小组的启发下,把△ABC绕点A顺时针旋转120°后得到△ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;
(3)奇异小组的同学把图3中的△BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度不断变化,直接写出AF的最大值和最小值.发布:2025/5/26 3:0:2组卷:83引用:1难度:0.3