已知椭圆的两焦点为F1(-1,0),F2(1,0),点P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.
(1)求此椭圆的方程;
(2)若点P满足∠F1PF2=60°,求△PF1F2的面积.
【考点】根据椭圆的几何特征求标准方程;椭圆的焦点三角形.
【答案】(1)=1;(2).
x
2
4
+
y
2
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/6 3:0:8组卷:33引用:4难度:0.4
相似题
-
1.已知椭圆C:
(a>b>0)的离心率为x2a2+y2b2=1,短轴长为2.32
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且线段MN的垂直平分线过定点(1,0),求实数k的取值范围.发布:2024/6/27 10:35:59组卷:2192引用:4难度:0.4 -
2.离心率为
,长轴长为53且焦点在x轴上的椭圆的标准方程为( )25发布:2024/7/3 8:0:9组卷:53引用:2难度:0.7 -
3.已知椭圆C2以椭圆C1:
+y2=1的长轴为短轴,且与椭圆C1有相同的离心率,那么椭圆C2的标准方程为 .x24发布:2024/8/6 8:0:9组卷:22引用:1难度:0.5