在平面直角坐标系中,椭圆C过点(3,12),焦点坐标为F1(-3,0),F2(3,0).直线n:x+1=0交椭圆C于A,B两点,P是椭圆C上异于A,B的任意一点,直线AP,BP分别交直线l:x+4=0于Q,R两点.
(1)求椭圆C的标准方程;
(2)求OQ•OR(O为坐标原点)的值.
3
1
2
3
3
OQ
OR
【答案】(1).
(2)13.
x
2
4
+
y
2
=
1
(2)13.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/11 0:0:9组卷:110引用:2难度:0.6
相似题
-
1.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4564引用:26难度:0.3 -
2.已知椭圆C:
=1(a>b>0)的一个顶点坐标为A(0,-1),离心率为x2a2+y2b2.32
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x-1)(k≠0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.发布:2024/12/29 12:30:1组卷:371引用:4难度:0.5 -
3.如果椭圆
的弦被点(4,2)平分,则这条弦所在的直线方程是( )x236+y29=1发布:2024/12/18 3:30:1组卷:460引用:3难度:0.6