已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),且点P(1,32)在椭圆C上,O为坐标原点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
P
(
1
,
3
2
)
【答案】(Ⅰ).
(Ⅱ)或.
x
2
4
+
y
2
3
=
1
(Ⅱ)
-
2
3
3
<
k
<
-
1
2
1
2
<
k
<
2
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:699引用:7难度:0.1
相似题
-
1.椭圆
(b>0)与双曲线x225+y2b2=1有公共的焦点,则b=.x28-y2=1发布:2024/12/30 13:0:5组卷:190引用:7难度:0.8 -
2.两千多年前,古希腊大数学家阿波罗尼奥斯发现,用一个不垂直于圆锥的轴的平面截圆锥,其截口曲线是圆锥曲线(如图).已知圆锥轴截面的顶角为2θ,一个不过圆锥顶点的平面与圆锥的轴的夹角为α.当
时,截口曲线为椭圆;当α=θ时,截口曲线为抛物线;当0<α<θ时,截口曲线为双曲线.在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P在平面ABCD内,下列说法正确的是( )θ<α<π2发布:2024/12/11 15:30:1组卷:557引用:3难度:0.3 -
3.已知等轴双曲线N的顶点分别是椭圆
的左、右焦点F1、F2.C:x26+y22=1
(Ⅰ)求等轴双曲线N的方程;
(Ⅱ)Q为该双曲线N上异于顶点的任意一点,直线QF1和QF2与椭圆C的交点分别为E,F和G,H,求|EF|+4|GH|的最小值.发布:2024/12/29 3:0:1组卷:354引用:3难度:0.6
相关试卷