当前位置:
知识点挑题
请展开查看知识点列表
>
<
更多>>
原创
![]() |
明确考点
剖析考向
配加典例和变式题
真题演练及精选模拟
全方位助力备考
浏览次数:4534
更新:2025年06月24日
|
原创
![]() |
知识图解
新知探究
答疑解惑
针对训练
浏览次数:934
更新:2025年06月24日
|
431.在一次化学测试中,高一某班50名学生成绩的平均分为82分,方差为8.2,则下列四个数中不可能是该班化学成绩的是( )
发布:2024/12/29 12:30:1组卷:374引用:10难度:0.9432.某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
测试达标的员工停止参加培训,没达标的继续培训,公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组 8 16 20 16
(2)在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.发布:2024/12/29 12:30:1组卷:334引用:8难度:0.7433.有5位同学排成一排照相,其中甲不能在首位,乙和丙必须相邻,则有( )种排队方法.
发布:2024/12/29 12:30:1组卷:24引用:2难度:0.6434.已知△ABC三内角A,B,C的对边分别为a,b,c,若
=1,则B的大小为( )ca+b+ab+c发布:2024/12/29 12:30:1组卷:528引用:8难度:0.8435.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行.它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:
根据学生的竞赛成绩,将其分为四个等级:测试成绩(单位:分) [60,70) [70,80) [80,90) [90,100) 等级 合格 中等 良好 优秀
(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.发布:2024/12/29 12:30:1组卷:11引用:2难度:0.6436.下列求导运算正确的是( )
发布:2024/12/29 12:30:1组卷:1013引用:25难度:0.9437.设X是一个离散型随机变量,其分布列如表,则q等于( )
X -1 0 1 P 0.5 1-2q q2 发布:2024/12/29 12:30:1组卷:1242引用:21难度:0.9438.2021年是北京城市轨道交通新线开通的“大年”,开通线路的条、段数为历年最多.12月31日首班车起,地铁19号线一期开通试运营.地铁19号线一期全长约22公里,共设10座车站,此次开通牡丹园、积水潭、牛街、草桥、新发地、新宫共6座车站.在试运营期间,地铁公司随机选取了乘坐19号线一期的200名乘客,记录了他们的乘车情况,得到下表(单位:人):
下车站
上车站牡丹园 积水潭 牛街 草桥 新发地 新宫 合计 牡丹园 /// 5 6 4 2 7 24 积水潭 12 /// 20 13 7 8 60 牛街 5 7 /// 3 8 1 24 草桥 13 9 9 /// 1 6 38 新发地 4 10 16 2 /// 3 35 新宫 2 5 5 4 3 /// 19 合计 36 36 56 26 21 25 200
(Ⅱ)在试运营期间,从在积水潭站上车的所有乘客中随机选取三人,设其中在牛街站下车的人数为X,求随机变量X的分布列以及数学期望;
(Ⅲ)为了研究各站客流量的相关情况,用ξ1表示所有在积水潭站上下车的乘客的上、下车情况,“ξ1=1”表示上车,“ξ1=0”表示下车.相应地,用ξ2,ξ3分别表示在牛街,草桥站上、下车情况,直接写出方差Dξ1,Dξ2,Dξ3大小关系.发布:2024/12/29 12:30:1组卷:608引用:8难度:0.5439.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4568引用:26难度:0.3440.已知数列{an}的前n项和sn=32n-n2+1,
(1)求数列{an}的通项公式;
(2)求数列{an}的前多少项和最大.发布:2024/12/29 12:30:1组卷:637引用:7难度:0.3
